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The response of the Blasius boundary layer to free-stream vortical disturbances
of the convected gust type is studied. The vorticity signature of the boundary
layer is computed through the boundary-region equations, which are the rigorous
asymptotic limit of the Navier–Stokes equations for low-frequency disturbances. The
method of matched asymptotic expansion is employed to obtain the initial and outer
boundary conditions. For the case of forcing by a two-dimensional gust, the effect
of a wall-normal wavelength comparable with the boundary-layer thickness is taken
into account. The gust viscous dissipation and upward displacement due to the mean
boundary layer produce significant changes on the fluctuations within the viscous
region. The same analysis also proves useful for computing to second-order accuracy
the boundary-layer response induced by a three-dimensional gust with spanwise
wavelength comparable with the boundary-layer thickness. It also follows that the
boundary-layer fluctuations of the streamwise velocity match the corresponding free-
stream velocity component. The velocity profiles are compared with experimental
data, and good agreement is attained.

The generation of Tollmien–Schlichting waves by the nonlinear mixing between
the two-dimensional unsteady vorticity fluctuations and the mean flow distortion
induced by localized wall roughness and suction is also investigated. Gusts with small
wall-normal wavelengths generate significantly different amplitudes of the instability
waves for a selected range of forcing frequencies. This is primarily due to the
disparity between the streamwise velocity fluctuations in the free stream and within
the boundary layer.

1. Introduction
The laminar–turbulent transition in boundary layers is an extremely complex

phenomenon which has attracted the attention of scientists and engineers for over
a century. Its understanding and prediction are of relevant academic interest and
of utmost importance for the design of efficient thermo-fluid systems. Indeed, the
boundary layer is responsible for much of the flow energy transfer and dissipation,
crucially affecting the performance of mechanical, aeronautical, civil and chemical
engineering systems. It is therefore important to determine whether a flow will be
laminar, transitional or turbulent, since the kinematic and thermal flow properties
change drastically in each regime.
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The first research efforts were directed towards the initial stage of transition,
namely the linear instability of a purely laminar boundary layer, where the small-
amplitude disturbances were assumed to be already present within the viscous layer.
The Orr–Sommerfeld stability equation for a viscous flow was derived from the
Navier–Stokes equations by Orr (1907) and Sommerfeld (1908). Tollmien (1929) and
Schlichting (1933) calculated the neutral curve of instability for the Blasius boundary
layer, and the unstable waves were thus named Tollmien–Schlichting (TS) waves.
Later, Schubauer & Skramstad (1947) were able to excite them in a wind tunnel by
introducing sound into the boundary layer through a small hole in the flat plate. In
this carefully designed environment, the free-stream turbulence was reduced to a very
low level, ∼0.01–0.03%.

The most relevant of the recent experimental studies on the controlled generation
of instability waves are the one by Wiegel & Wlezien (1993) for acoustic disturbances
and the ones by Dietz (1996, 1998, 1999) for vortical disturbances. In the latter, a
ribbon was vibrated in the free stream and roughness was placed at the wall to trigger
two-dimensional TS waves. Quantitative data of the amplitude of the instability waves
were thus obtained for the first time. The TS waves have therefore been generally
acknowledged as the key feature in laminar–turbulent transition when the level of the
external perturbations is reduced to a minimum.

Experiments under the influence of more intense free-stream turbulence have shown
that spanwise-alternating low- and high-speed disturbances within the boundary layer
may significantly amplify and distort the flow (Dryden 1936; Taylor 1939). Renewed
interest has risen with the studies by Bradshaw (1965), Klebanoff (1971), Arnal &
Juillen (1978), Kendall (1985, 1990, 1991), Gulyaev et al. (1989) and Westin et al.
(1994), which confirmed that these structures are of low frequency and are streamwise
elongated, as the streamwise velocity component is much larger than the wall-normal
and spanwise velocity components. The terms laminar streaks, breathing modes and
Klebanoff modes have been adopted. It is believed that small-amplitude Klebanoff
modes initially evolve linearly, and when their amplitude exceeds a threshold
amplitude, they may interact nonlinearly and be precursors of an alternative route
to turbulence, often called bypass transition. More recent experimental investigations
have been conducted by Watmuff (1998), Matsubara & Alfredsson (2001), Inasawa
et al. (2003), Fransson, Matsubara & Alfredsson (2005), Mans et al. (2005), Anthony,
Jones & LaGraff (2005), Volino (2005), Hernon, Walsh & McEligot (2007) and Huang
& Johnson (2007). Numerical simulations of the Klebanoff modes have also appeared
(see Jacobs & Durbin 2001, Nagarajan, Lele & Ferziger 2007 and Ovchinnikov,
Choudhari & Piomelli 2008 for direct numerical simulations and Lardeau, Li &
Leschziner 2007 for large-eddy simulations), where the inflow condition which models
the initial stage of the streak evolution was provided by a superposition of Orr-
Sommefeld and Squire modes. Fasel (2002) and recently Liu, Zaki & Durbin (2008)
used direct numerical simulations to study the breakdown to turbulence produced by
the interaction of TS waves with Klebanoff modes.

The mathematical modelling of the Klebanoff modes has provoked much interest
within the fluid mechanics community. Some formulations take into account the
free-stream disturbances, which generate the Klebanoff modes inside the boundary
layer. The relevant boundary value problem is inhomogeneous with respect to the
outer boundary conditions, which synthesize the interaction between the boundary
layer and the free-stream flow. The theoretical work by Crow (1966), prompted
by the experiments by Bradshaw (1965), was probably the first effort directed at
the entrainment of free-stream disturbances in the boundary layer. The focus was
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on small-amplitude, steady free-stream disturbances penetrating into the Blasius
boundary layer. The streamwise velocity was found to grow linearly with the
downstream distance. Goldstein, Leib & Cowley (1992) showed that Crow’s linear
solution is valid only within a short distance from the leading edge (see also
Goldstein & Leib 1993). The formation of laminar streaks was also investigated by
Choudhari (1996) using the linearized unsteady boundary-layer (LUBL) equations and
by Leib, Wundrow & Goldstein (1999) using the linearized unsteady boundary-region
(LUBR) equations. These equations are a rigorous asymptotic limit of the Navier–
Stokes equations for low-frequency disturbances. The latter equations account for the
effects of spanwise viscous diffusion, namely for spanwise wavelengths comparable
with the boundary-layer thickness, while in the boundary-layer equations these effects
are negligible because the spanwise wavelength is asymptotically larger than the
boundary-layer thickness. Leib et al. (1999) obtained the free-stream boundary
conditions by asymptotic matching between the boundary-layer displacement and
the outer flow. The external vortical flow is not independent of the viscous wall layer
because it is continuously influenced by the fluctuations within the boundary layer.
Their analysis reveals that the amplification of the streamwise velocity within the
boundary layer, recognized as the distinguished feature of the Klebanoff modes, is
due to the spanwise velocity component of the free-stream gust. Other works on
the generation of vorticity disturbances by free-stream fluctuations are by Goldstein
& Wundrow (1998), Wundrow & Goldstein (2001), Wu & Choudhari (2003) and
Goldstein & Sescu (2008). Similar structures have recently been studied, such as the
thermal Klebanoff modes (Ricco & Wu 2007; Ricco, Tran & Ye 2009), which may
be generated by free-stream gusts interacting with a compressible laminar boundary
layer.

The spatial development of the streaks has also been studied by the optimal growth
theory (Andersson, Berggren & Henningson 1999; Luchini 2000). These perturbations
are allowed to vanish in the free stream and are generated by an iterative procedure
to obtain the maximum growth at a specified downstream distance. The streamwise
velocity profile agrees well with the low-frequency experimental data in the core of the
boundary layer, even though the penetration of the free-stream vortical disturbances
is not included in the model.

Another related interesting issue is the scattering of TS waves. Since low-frequency
boundary-layer vorticity fluctuations (such as the Klebanoff modes) are generated
by free-stream vortical gusts propagating at the free-stream mean velocity, their
wavelength is much larger than the wavelength of the TS waves. Therefore, for free-
stream-induced vorticity disturbances to trigger TS waves, a wavelength conversion
mechanism is necessary to introduce the correct length scale into the problem. Such a
mechanism is called receptivity. Its objectives are (i) to explain the process of excitation
of the instability waves and (ii) to predict the TS-wave amplitude. The frequency of
the instability waves is provided by the unsteady free-stream disturbance, while the
wavelength is usually extracted from a steady perturbation, often located at the wall
(Goldstein 1985), or by a leading-edge adjustment mechanism induced by the non-
parallel effects of the mean flow (Goldstein 1983; Ricco & Wu 2007). The induced
wave has therefore the frequency and wavelength of the TS wave, so that it grows
exponentially as predicted by linear stability theory.

The pioneering works on receptivity have dealt with unsteady forcing of the
acoustic type (Goldstein 1983, 1985; Ruban 1985). Only recently has the interest
been directed to the TS-wave generation by free-stream vorticity. This represents
a more involved problem, in that the boundary-layer response to a sound wave
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can be often approximated by a Stokes layer, while the signature of the Klebanoff
modes is more difficult to compute. Kerschen (1991) presented the first asymptotic
receptivity study involving a gust, which was studied in more detail by Duck, Ruban &
Zhikharev (1996) using the triple-deck formulation. Choudhari (1996), following his
acoustic receptivity work (Choudhari & Streett 1992), investigated the receptivity to
three-dimensional gusts interacting with wall inhomogeneities by the finite-Reynolds-
number (FRN) approach. Extensive theoretical work has been carried out by Wu
(2001a ,b) for gusts interacting with localized and distributed wall roughness. Second-
order triple-deck calculations were employed for the first time to obtain very accurate
quantitative comparisons between the theoretical results and the experimental data
by Dietz (1999).

The wall-normal wavelength λ∗
y of the gust was not given in Dietz (1999), but

from the profile of the free-stream disturbance it could be inferred that λ∗
y was about

10 times the boundary-layer thickness. It is therefore likely that the wavelength was
large enough for the effects of boundary-layer displacement and viscous dissipation
on the free-stream gust to be neglected. The excellent agreement between Dietz’s data
and the theoretical results by Wu (2001a,b, where these effects were not taken into
account) confirms this hypothesis. The wavelength λ∗

y being large translates into an

asymptotically small scaled parameter κ2 =
√

2πνλ∗
x/U∞/λ∗

y ≈ δ∗/λ∗
y (Leib et al. 1999).

(Here ν is the kinematic viscosity of the fluid, λ∗
x is the streamwise wavelength, U∞ is

the mean free-stream velocity and δ∗ =
√

x∗ν/U∞ is a measure of the boundary-layer
thickness.) In this limit, the boundary-layer equations may be used instead of the
boundary-region equations; namely pressure fluctuations do not play a role at leading
order.

In the present work, we focus on four objectives related to the response of the
boundary layer to free-stream vortical gusts. They can be schematically listed as
follows:

(a) We first investigate the boundary-layer response to a two-dimensional convected
gust with a wall-normal wavelength comparable with the boundary-layer thickness,
λ∗

y = O(δ∗) (κ2 = O(1)). The analysis accounts for the effects of free-stream viscous
dissipation and of upward displacement of the gust due to the underlying boundary
layer.

(b) The three-dimensional form of the disturbances described above proves useful
to obtain a better representation of the vorticity fluctuations produced by a three-
dimensional gust with small wall-normal and spanwise wavelengths (κ2, κ = O(1),
where for κ the spanwise wavelength λ∗

z substitutes λ∗
y in the definition of κ2).

More precisely, as the asymptotic expansion is carried out with respect to the small
frequency, these components synthesize the second-order effects. It follows that the
mathematical framework can now account for disturbances of higher frequencies than
in previous studies. The first-order terms are found to be O(λ∗

x/λ
∗
z) (with λ∗

x � λ∗
z)

larger than the free-stream disturbances, while the second-order terms are of the same
order of the outer gust fluctuations. The inclusion of these terms is also important
because, in the three-dimensional case, the streamwise velocity of the Klebanoff mode
matches the corresponding component of the free-stream gust. This matching is not
possible if only the leading-order component is employed because the latter vanishes
in the free stream. This gives a more realistic representation of the streak profile
because these terms are dominant near the free stream. Arguably, Leib et al. (1999)
focused their analysis only on part of the vorticity signature because they sought to
reproduce experimental data of the peak of the laminar streaks located in the middle
of the boundary layer.
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Figure 1. Schematic of the asymptotic regions for different κ2 and x for boundary-layer
response to a two-dimensional gust. Here and in the following figure, the parts indicated with
R and underlined denote the results of the present analysis.

We are further interested in the physical mechanism responsible for the formation
of the outer fluctuations, which will be revealed to be subtler than for the first-order
quantities. It will be shown that pressure fluctuations play a key role, while they
are irrelevant for the generation of the first-order components. The present analysis
also works towards the objective of explaining the mechanism of bypass transition.
Indeed, as for example pointed out by Jacobs & Durbin (2001), while the low-
frequency disturbances distort the flow, the high-frequency ones may be responsible
for triggering the secondary instability when the streaks move towards the outer
portion of the boundary layer. It is therefore of great interest to compute accurately
the vorticity signature of the high-frequency component, a task which is tackled by
solving for the second-order components.

Figures 1 and 2 show schematics of the asymptotic regions for the response of a
two-dimensional and a three-dimensional free-stream gust, respectively. The regions
are defined according to the values of κ, κ2 and x = 2πx∗/λ∗

x = O(1), the scaled
streamwise distance from the leading edge. In the figures, the underlined parts indicate
the results of the present analysis and the notations LUBL and LUBR refer to the
LUBL and LUBR equations. At x 	 1, the initial conditions must be imposed to
solve the equations numerically, and the solution attains an asymptotic self-similarity
solution in the limit κ � 1, κ2x = O(1) (see § 4.1.2 and Leib et al. 1999, p. 184). At
x = O(1), the LUBR solution is valid for κ, κ2 = O(1) and the LUBL solution is valid
for κ, κ2 	 1, while for x � 1 the disturbances for κ, κ2 	 1 attain an asymptotic
solution (edge-layer confinement) and decay by viscous effects when κ, κ2 = O(1).

(c) Another task is to compare the streamwise velocity profiles of the Klebanoff
modes with experimental data. Of particular interest is the unique experimental
dataset by Westin et al. (1994, figure 12a, p. 210) of the fluctuating energy at a single
frequency of free-stream forcing.
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Figure 2. Schematic of the asymptotic regions for different κ, κ2 and x for three-dimensional
Klebanoff modes.

(d) The influence of wall-normal wavelengths comparable with the boundary-layer
thickness is investigated on the amplitude of TS waves scattered by the nonlinear
interactions between the two-dimensional vorticity fluctuations and the mean flow
distortion produced by localized wall perturbations. As outlined above, the wall-
normal wavelength was much larger than the boundary-layer thickness in previous
receptivity studies.

We compute the boundary-layer velocity signature by the LUBR equations with
proper outer boundary conditions to account for the unsteady free-stream forcing.
We consider two kinds of localized wall inhomogeneities, wall roughness and wall
suction, and employ the FRN approach developed by Choudhari & Streett (1992) to
compute the amplitude of the scattered TS waves. Different from triple-deck theory,
where the Reynolds number is treated as an asymptotically large quantity (and is
therefore scaled out of the problem), in the FRN approach the Reynolds number
appears in the equations as a parameter. Although the FRN framework is not as
mathematically rigorous as the triple-deck theory because of its ad hoc approach to
some aspects of the receptivity problem (such as the exclusion of the non-parallel
terms), results from the two methods show satisfactory quantitative agreement at
first order (Wu 2001a). The triple-deck approach is perfectly suited for those cases
in which the vorticity response is given by analytic formulas (Duck et al. 1996; Wu
2001a ,b). However, the FRN formulation is arguably simpler to implement when the
vorticity response is given by a numerical solution, like in the present case.

The paper is structured as follows. The mathematical formulation is presented in
section § 2: the framework of the LUBR equations with appropriate outer and initial
conditions is outlined in § 2.1, while the FRN receptivity approach is described in § 2.2.
The numerical procedures for solving the LUBR equations are found in § 3.1. A brief
description of the methodology for solving the homogeneous and inhomogeneous



The Klebanoff modes induced by small-wavelength free-stream vorticity 273

Orr–Sommerfeld equations, for the stability and receptivity calculations respectively,
is given in § 3.2. In § 4.1, the boundary-layer vorticity signatures induced by a two-
dimensional gust (§ 4.1.1) and a three-dimensional gust (§ 4.1.2) are discussed, and the
comparison with the available experimental data is presented in § 4.1.3. Section § 4.2
discusses the receptivity results, i.e. the effects of the free-stream gust properties on
the amplitude of the TS waves. A summary is given in § 5.

2. Mathematical formulation
2.1. Boundary-layer response to free-stream convected gusts

As in Leib et al. (1999), the mathematical framework for the response of a laminar
boundary layer to small free-stream vortical gusts is the LUBR equations. The
formulation follows closely the one by Leib et al. (1999), and it is extended to find the
outer boundary conditions ((2.13) and (2.21)–(2.23)) and the initial conditions ((2.30)
and Appendix B) for the components denoted as

{
u(0), v(0), w(0), p(0)

}
, which are of

second order in the core of the boundary layer and of first order in the outer portion
of it.

A flow of uniform velocity U∞ past an infinitely thin flat plate is considered.
Superimposed on U∞ are homogeneous, statistically stationary vortical fluctuations.
These perturbations are of the gust type; i.e. they are convected by the mean flow.
The flow is assumed to be incompressible and is described in terms of a Cartesian

coordinate system, i.e. by a position vector x = x î + y ĵ + zk̂ = x1 î + x2 ĵ + x3 k̂,
where x, y and z (or x1, x2 and x3) define the streamwise, wall-normal and spanwise
directions. Lengths are scaled by λ∗

z , the spanwise wavelength of gust, so that the
scaled spanwise wavenumber is k3 = 2π. The velocities are scaled by U∞, and the
pressure is normalized by ρ∗U 2

∞, where ρ∗ is the free-stream density, and the time by
λ∗

z/U∞. The symbol ∗ indicates a dimensional quantity.
Mathematically, the vorticity fluctuations can be represented as a superposition of

sinusoidal disturbances:

u − î = εgu∞(x − t, y, z) = εg û∞ei(k·x−k1t) + c.c.,

where εg 	 1 indicates the amplitude of the gust and c.c. denotes the complex
conjugate. The problem is formulated for a single Fourier component of the free-
stream turbulence. The gust vector û∞ = {û∞

1 , û∞
2 , û∞

3 } can be expressed as

û∞ = {sin θg cos φg, cos θg, sin θg sinφg},
upon introducing the polar angle θg(0 < θg < π) and the azimuthal angle φg (−π <

φg < π) of orientation (Choudhari 1996). It further occurs that

|û∞| =

√(
û∞

1

)2
+

(
û∞

2

)2
+

(
û∞

3

)2
= 1 (2.1)

and that the continuity equation can be written as

û∞ · k = 0. (2.2)

For a two-dimensional gust (i.e. for a gust with no spanwise velocity component,
û∞

3 = 0, and with an infinitely long spanwise wavelength, k3/k1 → 0), φg = 0 and θg

describes û∞.
We focus on low-frequency (i.e. long-wavelength) disturbances with k1 	 1, as

these are the ones that can penetrate the most into the boundary layer to form the
laminar streaks. The Reynolds number is defined as Rλ ≡ U∞λ

∗
z/ν. We take Rλ to be
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asymptotically large, i.e. Rλ � 1. Following Leib et al. (1999), the flow is studied at
downstream locations at which the boundary-layer thickness δ∗ = O(λ∗

z), i.e. where
x/Rλ = O(1), which means that the diffusion in the spanwise direction is of the same
order as that in the wall-normal direction. A distinguished scaling is k1 = O

(
R−1

λ

)
or, equivalently, x = k1x = O(1) because the laminar streaks evolve downstream on
a length scale which is comparable with the streamwise wavelength of the gust. Due
to the disparity between the spanwise and streamwise scales, O(εg) fluctuations in
the free stream can generate O(εg/k1) streamwise velocity disturbances within the
boundary layer. We assume that the amplitude of disturbances is much smaller than
the amplitude of the mean flow, so that the equations can be linearized. The condition
for linearization, εg/k1 	 1, becomes εgRλ 	 1.

The unsteady perturbations interact with the flat plate. The flow field can be
described by the rapid distortion theory of turbulence. When the theory is applied to
a flow over an infinitely thin flat plate, the velocity at leading order is expressed as
(Goldstein 1978)

u = î + εg(u∞ + ∇φ).

The potential function φ arises from the interaction of the gust with the flat plate
and must be included in order to satisfy the no-penetration boundary condition at
the plate. As shown by Leib et al. (1999), for x � 1

φ =
û∞

2 e−Γy

Γ
eik1(x−t)+ik3z + c.c., Γ ≡

(
k2

1 + k2
3

)1/2
.

The streamwise and spanwise slip velocities at the surface of the plate (y = 0) are
given by

u
(1)
1 (0) = û∞

1 +
ik1

Γ
û∞

2 , u
(1)
3 (0) = û∞

3 +
ik3

Γ
û∞

2 . (2.3)

These velocities are reduced to zero across the boundary layer. A similarity solution
exists for this flow with the similarity variable defined as

η ≡ y

(
Rλ

2x

)1/2

= y∗
√

U∞

2νx∗ . (2.4)

The mean flow solution is expressed as

U = F ′(η), V = (2xRλ)
−1/2

(
ηF ′ − F

)
, (2.5)

where the prime indicates differentiation with respect to η and U and V represent
the mean streamwise and wall-normal velocity components. It follows from the x-
momentum equation that F is governed by

F ′′′ + FF ′′ = 0. (2.6)

The boundary conditions are

F (0) = F ′(0) = 0, and F ′ → 1 as η → ∞.

For a single Fourier component of the disturbance, the solution in the boundary
layer is expressed as

{u, v, w, p} = {U, V, 0, −1/2}

+ εg

{
u0(x, η),

(
2xk1

Rλ

)1/2

v0(x, η), w0(x, η), p0(x, η)

}
ei(k3z−k1t) + c.c. + . . . . (2.7)
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Boundary-layer disturbances with λ∗
z � δ∗ at x = O(1) are described by the LUBL

equations (see (4.5) and (4.6) in Leib et al. 1999, p. 176). When δ∗ = O(λ∗
z),

the LUBR equations must be employed. These equations (Kemp 1951) represent
the asymptotically rigorous limit of the Navier–Stokes equations for disturbances
with streamwise wavelength which is long compared with both the boundary-layer
thickness and the spanwise wavelength. The LUBR equations are well suited for
studying the Klebanoff modes, since experimental evidence (Kendall 1985; Westin
et al. 1994) suggests that when the streaky structures are well developed within the
boundary layer, they are of low frequency and their spanwise wavelength is O(δ∗).
The velocity and pressure disturbances are expressed as (Gulyaev et al. 1989)

{u0, v0} = C(0)
{
u(0), v(0)

}
+ (ik3/k1)C{u, v},

w0 = −(ik1/k3)C
(0)w(0) + Cw,

p0 = (k1/Rλ)C
(0)p(0) + iκ (k1/Rλ)

1/2 Cp,

⎫⎪⎪⎬
⎪⎪⎭ (2.8)

where κ ≡ k3/(k1Rλ)
1/2 =

√
2πνλ∗

x/U∞/λ∗
z =O(1), C(0)=û∞

1 + ik1û
∞
2 /Γ and C=û∞

3 +
ik3û

∞
2 /Γ . The terms proportional to the components {u, v, w, p} have been studied

by Leib et al. (1999) and represent the dominant part of the vorticity and pressure
fluctuations in the core of the boundary layer. The terms proportional to the
components {u(0), v(0), w(0), p(0)} indicate the second-order part in the middle of the
boundary layer and the leading-order part of the Klebanoff modes at the outer edge
of the boundary layer. They are solved for in the following for the first time. Both
{u(0), v(0), w(0), p(0)} and {u, v, w, p} satisfy the LUBR equations:

∂u

∂x
− η

2x

∂u

∂η
+

∂v

∂η
+ w = 0, (2.9)(

−i + κ2 − ηF ′′

2x

)
u + F ′ ∂u

∂x
− F

2x

∂u

∂η
− 1

2x

∂2u

∂η2
+ F ′′v = 0, (2.10)(

−i + κ2 +
(ηF ′)′

2x

)
v + F ′ ∂v

∂x
− F

2x

∂v

∂η
− 1

2x

∂2v

∂η2
− η(ηF ′)′ − F

(2x)2
u +

1

2x

∂p

∂η
= 0,

(2.11)

(−i + κ2)w + F ′ ∂w

∂x
− F

2x

∂w

∂η
− 1

2x

∂2w

∂η2
− κ2p = 0. (2.12)

The LUBR equations simplify to the boundary-layer equations for κ → 0 and
x = O(1), namely in the limit of vanishing spanwise diffusion. For the response to a
two-dimensional gust, w(0), u, C, κ vanish, and C(0) = i exp(−iθg) = û∞

1 + iû∞
2 .

Note that the LUBR equations correctly include the non-parallel terms, which
are the expression of the downstream evolution of the boundary layer. These terms
play a leading-order role especially in the outer portion of the boundary layer (Wu
2001a). Therefore, the Orr–Sommerfeld and Squire equations, where the non-parallel
effects are absent, cannot describe the laminar streaks. However, the Orr–Sommerfeld
equation can be successfully employed for the receptivity analysis because the TS-wave
generation is a local process, whereas the Klebanoff modes dynamics is non-local.
The complete evolution from the proximity of the leading edge must be considered
because the free-stream disturbances continuously interact with the boundary layer.
Numerical evidence of the failure of the parallel approximation to describe the laminar
streaks at the beginning of their evolution and of its validity further downstream is
given in § 4.2.
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The boundary-region system (2.9)–(2.12) requires free-stream boundary and initial
conditions, which are studied in § 2.1.1 and § 2.1.2.

2.1.1. Outer boundary conditions

To derive the outer boundary conditions for (2.9)–(2.12), the velocity field is
expanded as (Leib et al. 1999)

u = (∂Ψ/∂y, −∂Ψ/∂x, 0) + εgu(0)ei(k3z−k1t) + c.c. + . . . ,

where Ψ is the streamfunction of the mean flow,

Ψ = y − βRe [2 (x + iy) /Rλ]
1/2 ,

with Re indicating the real part and β = 1.217 . . . . As y → 0, it reduces to
Ψ ∼ y − β (2x/Rλ)

1/2 = y(0)/(k1Rλ)
1/2 upon introducing the new scaled variable:

y(0) ≡ (2x)1/2η, η ≡ η − β.

It is found (Leib et al. 1999, p. 181) that the free-stream velocity components are

u(0) = û∞ei(x+κ2y
(0))−(κ2+κ2

2 )x as k1y → 0.

The exponent −(κ2 + κ2
2 )x accounts for the viscous attenuation, while the boundary-

layer displacement effect is absorbed into the exponent iκ2y
(0). If k1 � R−1

λ , then
κ, κ2 	 1 so that both effects can be neglected at leading order for x = O(1). At
x = O(1), κ2 = O(1) translates into δ∗ = O(λ∗

y), so that the boundary layer displaces
the vortical disturbances upward and the viscous effects are induced by the small λ∗

y

of the gust.
The boundary conditions as η → ∞ for the LUBR equations are obtained by solving

the large-η LUBR equations, which are found by substituting F → η into (2.9)–(2.12).
The solutions to the large-η equations which match the free-stream solutions are

u(0) =
eix

κ2 − i|κ |

(
κ2e

iκ2y
(0)−(κ2+κ2

2 )x − i|κ |e−|κ |y(0)
)

, (2.13)

v(0) =
eix+iκ2y

(0)−(κ2+κ2
2 )x

κ2 − i|κ |

(
κ2β

(
κ2

2 − κ2
)

2x
(
κ2 + κ2

2

) −
1 + i

(
κ2 + κ2

2

)
(2x)1/2

)
+

eix−|κ |y(0)

κ2 − i|κ |

×
(

−2iβ|κ |3 + (2x)−1/2 +
i|κ |β
4x

(
1 + 2|κ |y(0)

))
+

|κ |eix−|κ |y(0)

(2x)1/2

∫ x

0

g(0)(x̆)e−ix̆dx̆,

(2.14)

w(0) =
2iβκ2κ2

2 eix+iκ2y
(0)−(κ2+κ2

2 )x

(2x)1/2
(
κ2 − i|κ |

) (
κ2 + κ2

2

) +
iβκ2eix−|κ |y(0)

κ2 − i|κ |

(
1/2 + |κ |y(0)

(2x)1/2
− 2κ2(2x)1/2

)

+ κ2eix−|κ |y(0)

∫ x

0

g(0)(x̆)e−ix̆dx̆, (2.15)

p(0) = − iβeix

(2x)3/2(κ2 − i|κ |)

((
1

2
+ |κ |y(0)

)
e−|κ |y(0)

+
2κ2

2 eiκ2y
(0)−(κ2+κ2

2 )x

κ2 + κ2
2

)
+g(0)(x)e−|κ |y(0)

(2.16)
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and

u = 0, (2.17)

v =
ieix

(κ2 − i|κ |)(2x)1/2

(
eiκ2y

(0)−(κ2+κ2
2 )x − e−|κ |y(0)

)
+

|κ |eix−|κ |y(0)

(2x)1/2

∫ x

0

g(x̆)e−ix̆dx̆, (2.18)

w =
eix

κ2 − i|κ |

(
κ2e

iκ2y
(0)−(κ2+κ2

2 )x − i|κ |e−|κ |y(0)
)

+ κ2eix−|κ |y(0)

∫ x

0

g(x̆)e−ix̆dx̆, (2.19)

p = g(x)e−|κ |y(0)

, (2.20)

where g(0)(x) and g(x) are unknown. Equations (2.17)–(2.20) are also given in Leib
et al. (1999) as (5.20)–(5.23). The coefficients κ2/(κ2 − i|κ |) and −i|κ |/(κ2 − i|κ |) in (2.19)
for w are found by imposing two conditions. The first condition is that w → exp (ix)
as x → 0+ because this is the behaviour of the spanwise velocity component as
the free stream and the leading edge are approached (see (4.12) in Leib et al. 1999,
p. 177). The second condition is that v must be bounded as x → 0+ to match the
boundary-layer initial condition given by (4.13) in Leib et al. (1999, p. 177), i.e.
v → (η2F ′′ − 3ηF ′ − F )/4. Note that the outer behaviour for the spanwise velocity
component and the upstream behaviour of the wall-normal velocity component for
the boundary-layer case (κ = 0, studied by Leib et al. 1999 and given at p. 177
of their work) may be used in the boundary-region case when x → 0+ because in
this limit the spanwise diffusion and the upward displacement effects on the gust
are negligible. It is mathematically interesting to note that the same coefficients are
found in (2.13) for u(0) by imposing a different condition. For this component, it is
required that w(0) → 0 as κ → 0 for every κ2 at every x, namely that in the boundary-
layer case there be no pressure disturbance at leading order to generate a spanwise
velocity fluctuation in the free stream and within the boundary layer. Similar to v, the
component v(0) must match the boundary-layer initial condition as x → 0+ because
the gust behaves as if κ = 0; namely the spanwise viscous dissipation and the upward
displacement are negligible. However, v(0) is not bounded like v as x → 0+, but it
grows as ∼ x−1: v → (η(ηF ′)′ − F )/(4x) ((4.13) in Leib et al. 1999). The expressions
for the free-stream forcing components, (2.13) for u(0) and (2.19) for w, coincide apart
from the integral term in (2.19), due to the spanwise pressure gradient when κ = O(1).
This term is absent in (2.13) because the streamwise pressure gradient is negligible
for low-frequency disturbances.

Equations (2.13) and (2.17) can be applied as Dirichlet boundary conditions as
η → ∞, whereas (2.14)–(2.16) and (2.18)–(2.20) cannot be employed as such because
g, g(0) are unknown. These functions can be eliminated to obtain the boundary
conditions

∂v (0)

∂η
+ |κ |(2x)1/2v (0) → iβκ2eix−|κ |(2x)1/2η

(κ2 − i|κ |)(2x)1/2

+

(
iκ2β

(
κ2

2 − κ2
)

(2x)1/2
(
κ2 + κ2

2

) − i + κ2 + κ2
2

)
eix+iκ2(2x)1/2η−

(
κ2+κ2

2

)
x
, (2.21)

∂w(0)

∂η
+ |κ |(2x)1/2w(0) → iβ|κ |3eix−|κ |(2x)1/2η

κ2 − i|κ | − 2βκ2κ2
2 eix+iκ2(2x)1/2η−(κ2+κ2

2 )x

κ2 + κ2
2

, (2.22)

∂p(0)

∂η
+ |κ |(2x)1/2p(0) → − iβ|κ |eix−|κ |(2x)1/2η

2x(κ2 − i|κ |) +
βκ2

2 eix+iκ2(2x)1/2η−(κ2+κ2
2 )x

x
(
κ2 + κ2

2

) (2.23)
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and

∂v

∂η
+ |κ |(2x)1/2v → −eix+iκ2(2x)1/2η−(κ2+κ2

2 )x, (2.24)

∂w

∂η
+ |κ |(2x)1/2w → iκ2(2x)1/2eix+iκ2(2x)1/2η−(κ2+κ2

2 )x, (2.25)

∂p

∂η
+ |κ |(2x)1/2p → 0, (2.26)

as η → ∞. For {u, v, w, p}, the spanwise component is balanced by the wall-
normal component through continuity and drives the laminar streaks in the core
of the boundary layer. The pressure disturbance p plays no role. The physical
mechanism involved in the formation of the outer portion of the Klebanoff modes,
i.e. {u(0), v(0), w(0), p(0)}, is slightly subtler. The wall-normal gradient of the streamwise
velocity perturbation in the free stream, mainly caused by the displacement effect
due to the boundary-layer growth, generates an unsteady pressure p(0). This pressure
induces the spanwise velocity component w(0) which is balanced by u(0) and v(0).
The velocity components and the pressure fluctuations are therefore all forcing the
disturbances inside the boundary layer.

For a two-dimensional gust, the outer boundary conditions simplify to

u(0) → eix+iκ2(2x)1/2η−κ2
2 x, (2.27)

∂v(0)

∂η
→

(
iκ2β(2x)−1/2 − i + κ2

2

)
eix+iκ2(2x)1/2η−κ2

2 x, (2.28)

∂p(0)

∂η
→ βx−1eix+iκ2(2x)1/2η−κ2

2 x. (2.29)

Note that for the response to a two-dimensional gust the pressure p(0) appears in
(2.11) and in (2.29) only in its wall-normal derivative ∂p(0)/∂η, so that its actual value
remains undetermined.

2.1.2. Initial conditions

The initial conditions for {u, v, w, p} (see (5.25)–(5.27) in Leib et al. 1999, p. 182)
are

u → 2xŨ0 + (2x)3/2Ũ1,

v → Ṽ0 + (2x)1/2Ṽ1 +
i

(κ2 − i|κ |)(2x)1/2

(
eiκ2(2x)1/2η−(κ2+κ2

2 )x − e−|κ |(2x)1/2η
)

−
(
3β/4 − 1

2
g1|κ |(2x)1/2

)
e−|κ |(2x)1/2η − vc,

w → W̃0 + (2x)1/2W̃1 +
1

κ2 − i|κ |

(
κ2e

iκ2(2x)1/2η−(κ2+κ2
2 )x − i|κ |e−|κ |(2x)1/2η

)

−3β|κ |
4

(2x)1/2e−|κ |(2x)1/2η − wc,

where the quantities in capital letters are the first two terms of the power series

{u, v, w, p} =

∞∑
n=0

(2x)n/2

{
2xŨn(η), Ṽn(η), W̃n(η),

P̃n(η)

(2x)1/2

}
.
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The differential equations and boundary conditions satisfied by the terms are found
in Appendix B in Leib et al. (1999), and the quantities vc and wc indicate the
common parts and are given in Appendix C in Leib et al. (1999). The conditions for
{u(0), v(0), w(0), p(0)} are determined by a similar regular perturbation to find a power
series for η = O(1) and x 	 1:

{u(0), v(0), w(0), p(0)} =

∞∑
n=0

(2x)n/2

{
Un(η),

Vn(η)

2x
,

Wn(η)

(2x)1/2
,

Pn(η)

(2x)3/2

}
. (2.30)

The equations governing the power series terms and the boundary conditions are
found in Appendix A. The upstream perturbation profiles for the LUBR equations
are obtained by constructing a composite solution that is uniformly valid for all
values of η. This is done by using the additive rule, which involves adding the power
series (2.30) (which are valid for η = O(1)) and the small-x limit form of expressions
(2.13)–(2.16) (which are valid where y(0) = O(1)) and subtracting their common part.
Note that as the boundary-region equations (2.9)–(2.12) are parabolic in nature, the
streamwise pressure gradient is negligible at leading order, which implies that an initial
condition for the pressure disturbance is not needed to start the numerical integration.
The series expression for the pressure disturbance in (2.30) has however been useful to
check the numerical results at small x locations. The reader is referred to Appendix B
for the initial conditions. Note that the asymptotic solution for κ, κ2 	 1 as x → ∞,
studied by Leib et al. (1999, pp. 177–179), may not be used as initial condition for the
boundary-region equations. In that case, the disturbances are exponentially small in
the core of the boundary layer and are confined near the free stream. This behaviour
is in marked contrast with the one of the streaks when x 	 1, which show a peak in
the core of the boundary layer and vanish in the outer portion (see Choudhari 1996).

2.2. Receptivity to vorticity disturbances interacting with wall inhomogeneities

The mathematical formulation for the TS-wave generation by the interaction of the
free-stream-induced vorticity fluctuations with localized wall inhomogeneities at a
distance x∗ = l∗ is presented in this section. A schematic of the physical mechanism
for the wall-roughness case is shown in figure 3. The FRN approach pioneered by
Choudhari & Streett (1992) for free-stream acoustic forcing is adopted. The reader
should refer to Choudhari (1994a ,b, 1996) for further details. The receptivity problem
is formulated for the general three-dimensional case with k3 
= 0, although the
calculations in § 4.2 are carried out for a two-dimensional free-stream gust.

We consider localized surface disturbances of two types, wall roughness and wall
suction. Similar to the vorticity flow induced from the free stream, the mean flow
produced by the wall perturbation is assumed small compared with the unperturbed
Blasius flow, which implies that the equations can be linearized. In the wall-roughness
case, the maximum height of the roughness element, h∗

w,m = maxx (h∗
w(x∗)), is therefore

taken as small compared with a measure of the wall-normal length scale of the Blasius
flow in the proximity of the wall. The asymptotic triple-deck theory (Sobey 2001)
shows that the condition for linearization is that the maximum height of the roughness
must be much smaller than the inner layer of the multiple-scale interaction, namely
h∗

w,m/x∗ 	 Re−5/8
x , where Rex = x∗U∞/ν. In receptivity studies, the distances are

usually scaled by the displacement thickness

δ∗
d = d

√
x∗ν/U∞ = dx∗Re−1/2

x , d = 1.72078 . . . ,
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Unsteady vorticity disturbance

Free-stream convected gust

Scattered TS waveMean flow distortion

Wall roughness

ωg

Re(αTS)

Figure 3. Schematic of physical mechanism of generation of TS waves by unsteady vorticity
disturbances interacting with localized wall roughness. The dashed arrows indicate the linear
responses from the free stream and the wall, while the solid arrows denote the nonlinear
interaction between the vorticity disturbance and the mean flow distortion which causes
the TS-wave scattering. The frequency ωg is extracted from the free-stream gust, while the
streamwise wavenumber Re(αT S) is provided by the wall inhomogeneity.

at x∗ = l∗, so that the condition for linearization is h∗
w,m/δ∗

d 	 Re−1/8
x . The

asymptotically small parameter εr
w ≡ h∗

w,m/δ∗
d is defined. For wall suction, the maximum

steady suction velocity, v∗
s,m = maxx (v∗

s (x
∗)), is assumed much smaller than U∞,

and we define εs
w ≡ v∗

s,m/U∞ 	 1. The scaled wall perturbations can be expressed

as hw(X) = εr
wH r

w(X) and vs(X) = εs
wH s

w(X), where Hj
w(X)=O(1) (j = r, s) and

X = x∗/δ∗
d .

The downstream Reynolds number can also be defined on δ∗
d as Reδ = δ∗

dU∞/ν =
d

√
Rex . The frequency is scaled as follows:

f ≡ ω∗ν

U 2
∞

or ωg ≡ ω∗δ∗
d

U∞
= f Reδ.

The spanwise wavenumber of the gust and of the TS wave becomes

βg ≡ 2πδ∗
d

λ∗
z

=
ωgk3

k1

,

and the scaled downstream distance for the vorticity response can be expressed as

x = f Rex. (2.31)

The velocity field in the boundary layer is

{u, v, w}(X, Y, Z, T ) = {U (Y ), 0, 0} + εj
w{Uw(X, Y ), Vw(X, Y )}

+ εg{Ug(Y ), Vg(Y ), Wg(Y )}eiαgX+iβgZ−iωgT + εj
wεg

× {Uw,g(X, Y ), Vw,g(X, Y ), Ww,g(X, Y )}eiβgZ−iωgT + . . . , (2.32)

where αg = ωg . The first term on the right is the Blasius solution. The quasi-parallel
flow assumption is adopted; i.e. the wall-normal velocity of the Blasius flow is
assumed small compared with the streamwise velocity. The quantities with subscript
w are the steady flow distortion induced by the wall roughness or wall suction, and
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the quantities with subscript g are the unsteady vorticity disturbances induced by the
free-stream perturbations. The quantities with subscript w, g indicate the scattered
TS wave, which is produced by the nonlinear interaction between the two previous
perturbations. Similar to X, the wall-normal and spanwise coordinates, Y, Z, are
scaled by δ∗

d and the time T by δ∗
d/U∞. The wall-normal coordinate Y is related to η,

the coordinate used in the Klebanoff modes analysis: Y =
√

2η/d .
The boundary-layer vorticity response is

Ug(Y )eiαgX ≈ u0, Vg(Y )eiαgX ≈
(

2xk1

Rλ

)1/2

v0, Wg(Y )eiαgX ≈ w0, (2.33)

where u0, v0, w0, given in (2.7) and (2.8), are composed of both the components studied
by Leib et al. (1999), which are dominant in the core of the boundary layer, and the
components

{
u(0), v(0), w(0), p(0)

}
, which are the relevant ones in the outer portion of

the boundary layer. As in Choudhari (1996), it is assumed that the vorticity response
locally presents a streamwise modulation with wavenumber αg , which is αg = ωg

for a convected gust. We therefore expect the localized wall perturbations to be at a
downstream location at which the Klebanoff modes relax to the streamwise behaviour
of the free-stream convected gust. Expression (2.33) is a good approximation because
the vorticity response evolves on a streamwise scale O(λ∗

x), which is much larger than
the streamwise wavelength of the TS waves (assumed to be of the same order of
δ∗
d) and much shorter than the scale of the mean boundary layer, i.e. the distance

from the leading edge. Furthermore, following the results by Wu (2001a ,b) based on
a rigorous asymptotic analysis for two-dimensional, low-frequency disturbances, we
adopt the ‘inner approximation’; namely we neglect the effect of the exponentially
decaying (along y) part of the free-stream gust.

An equation of motion for the wall-normal velocity component is obtained from
the Navier–Stokes equations by taking the divergence of the momentum equations
and by using the continuity equation to eliminate the pressure (see Kim, Moin
& Moser 1987 for the derivation, although for the stability analysis the nonlinear
terms are neglected). Solution (2.32) is substituted into this equation, and terms
O(εj

w) and O(εj
wεg) are collected. The velocity components of the disturbance are

Fourier transformed along the X direction because the coefficients of the equation are
independent of this coordinate. The homogeneous Orr–Sommerfeld equation for the
Fourier-transformed wall-normal velocity component V w of the mean flow distortion
is obtained by collecting O(εj

w) terms:

LOS(V w) = 0, LOS = i(αU − ωg)(D
2 − α2) − iαUYY − 1

Reδ

(D2 − α2)2,

where D and the subscript Y indicate differentiation with respect to the wall-normal
coordinate. The following boundary conditions apply:

V w, V wY → 0 as Y → ∞,

V w = 0, V wY = iαUY (0)H
r

w(α), at Y = 0 for wall roughness,

and

V w = H
s

w(α), V wY = 0, at Y = 0 for wall suction,

where the no-slip boundary condition at the wall roughness (Y = hw(X)) has been
shifted to Y = 0 through a Taylor expansion in Y . The streamwise velocity can
be computed by the continuity equation to obtain Uw = iV wY /α. Note that the
calculations above for the mean flow distortion are carried out at the complex
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wavenumber of the instability wave, α = αT S(ωg, Reδ), which is computed from the
stability calculations based on the homogeneous Orr–Sommerfeld equation.

By collecting O(εj
wεg) terms, the inhomogeneous Orr–Sommerfeld equation for the

wall-normal velocity of the TS wave is found,

LOS(V w,g) = iα3
gUwV g + iα3

wV wUg − iαgUwV gYY
− iαwV wYY Ug

+ iαgβ
2UwV g + α2

gV wV gY
+ α2

wV wY V g − V wV gYYY
− V wYYY V g

+ β2V wV gY
+ 2iαwα2

gUwV g + 2iα2
wαgV wUg − 2αgαw(UwUgY

+ UwY Ug)

+ iαwαg(αgV wUg + αwUwV g) + i(αwV wUgYY
+ αgUwYY V g)

+ iαwβ2V wUg + 2αwαg(V wV gY
+ V wY V g) +

(
α2

gV wY V g + α2
wV wV gY

)
− V wY V gYY

− V wYY V gY
+ β2V wY V g, (2.34)

which is subject to the following boundary conditions:

V w,g = 0, V w,gY
= iαwUgY Hw(αw), at Y = 0, for wall roughness, (2.35)

V w,g = 0, V w,gY
= 0, at Y = 0 for wall suction,

and

V w,g, V w,gY
→ 0 as Y → ∞.

The streamwise wavenumber αw ≡ α − αg is defined. The source term on the right-
hand side of (2.34) synthesizes the nonlinear interaction between the free-stream
vorticity flow and the mean flow distortion.

The objective is to determine the amplitude of the streamwise velocity component
of the TS wave. This is usually the quantity of interest in receptivity studies because
it is often measured in experiments. It can be expressed as

Uw,g(X, Y, Z, T ) = εj
wH

j

w(αT S − αg)εgΛu(ωg, Reδ)Eu(Y ; ωg, Reδ)e
i(αT SX+βgZ−ωgT ),

where Eu(Y ; ωg, Reδ) indicates the eigenfunction of the streamwise velocity component
of the instability wave. It is scaled so that the maximum of its absolute value is unity.

Also in the above equation, H
j

w is the Fourier transform of the X distribution of
the wall perturbation. The quantity Λu(ωg, Reδ) is the efficiency function, and it
depends on the types of free-stream disturbance and surface inhomogeneities, but it
is independent of the actual shape of the wall disturbance. This represents a valuable
asset of receptivity studies, as discussed in Choudhari & Streett (1992). The product
ΛuEu is evaluated by the residue contribution of the simple pole at the TS-wave
eigenvalue αT S , calculated by solving numerically the homogeneous Orr–Sommerfeld
stability problem. The solution is

ΛuEu =

√
2πi

H
j

w(αT S − αg)
∂
(
Uw,g

−1
)

∂α

∣∣∣∣
α=αT S

,

from which |Λu| is found.

3. Numerical procedures
The mean-flow equation (2.6) is decomposed into three ordinary differential

equations, which are solved by a second-order, implicit finite-difference scheme. The
nonlinear system is solved by Newton–Raphson iteration (Cebeci 2002).
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3.1. Solution of the LUBR equations

The LUBR equations (2.9)–(2.12) are parabolic in the x direction and elliptic in the z

direction, so that they can be solved by marching downstream by applying the initial
conditions (B1)–(B4) and (5.25)–(5.27) in Leib et al. (1999, p. 182), the outer boundary
conditions (2.13), (2.17), (2.21)–(2.23) and (2.24)–(2.26) and the no-slip condition at
the wall. A second-order, implicit finite-difference scheme which is central in η and
backward in x is employed for the computation of {u, v, w, p}. The discretization
scheme along x is increased to third order for the computation of {u(0), v(0), w(0), p(0)}
because higher accuracy is required near the leading edge as v(0), w(0) are singular
as x → 0+ (see (2.30)). The pressure terms are computed on a grid staggered in the
η direction with respect to the grid for the velocity components with the purpose
of avoiding the pressure decoupling phenomenon. This undesired effect occurs if the
grid for the pressure coincides with the grid for the velocity components. The pressure
at the wall needs not be specified; its value is calculated a posteriori by solving the
z-momentum equation at η = 0. The outer mixed boundary conditions (2.21)–(2.23)
and (2.24)–(2.26) are applied by a second-order finite-difference approximation. The
linear system is solved by a standard block-elimination algorithm, described in Cebeci
(2002, pp. 260–264). A uniform grid with a typical mesh size of �η = 0.05 is used,
and the domain extends to η = 30.

The numerical implementation of the initial conditions for v(0), w(0) requires special
attention because of their singular behaviour as x → 0+. If the calculations are
started at a too small x0 value, the streamwise gradients ∂v(0)/∂x, ∂w(0)/∂x are too
large and the finite-difference scheme may not approximate accurately the analytic
expression for the initial conditions (B1) and (B2). On the other hand, calculations
must be started at a small enough x0 for the initial conditions to be valid. The
integration step �x must be kept small during the initial iterations, while it can be
increased as the streamwise gradients decrease downstream. The values of x0 and of
the initial �x are found iteratively by minimizing the error between the numerical and
analytical expressions for ∂v(0)/∂x, ∂w(0)/∂x during the initial numerical calculations.
For κ = κ2 = 1, x0 ≈ 10−3, and �x ≈ 10−4 near the leading edge (x < 0.01), and
�x ≈ 10−3 further downstream. This problem is not encountered for v, w because
these components are bounded for small x, so that the calculations may be started
from any small non-zero x value. The pressure terms p, p(0) are also singular in this
limit, but their initial conditions are not needed to initiate the numerical calculations
because the streamwise pressure gradient term is absent in the LUBR equations.
Expressions (B4) and (4.16) in Ricco & Wu (2007, p. 111) are only used to verify
the correctness of the pressure profiles during the initial integration steps. As further
checks, the solutions of the LUBR equations for vanishingly small values of κ and
κ2 are successfully compared with the solutions to the boundary-layer equations (see
Leib et al. 1999, p. 176), obtained by a separate code which employs the Keller-box
method (Cebeci 2002), and with the results by Choudhari (1996). The solutions of
the LUBR equations for {u, v, w, p} with κ, κ2 = O(1) match the ones by Leib et al.
(1999).

3.2. Solution of the stability and receptivity equations

The Orr–Sommerfeld stability equation has been solved by two methods: a fourth-
order explicit Runge–Kutta scheme which employs the compound matrix method,
and a second-order fully implicit finite-difference method. The solutions of the two
methods show excellent agreement. The reader should refer to the papers by Ng &
Reid (1979), Davey (1982), Sengupta (1992), Allen & Bridges (2002, 2003a ,b) and
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Sengupta & Subbaiah (2006) for details on the compound matrix method used to cure
the stiffness-related problems when an explicit algorithm, such as the Runge–Kutta
method, is employed. The implicit method is described in Malik (1990). It is a local
method in that an initial guess for the eigenvalue is needed and an iteration process
leads to the correct solution. The receptivity problem, where the Orr–Sommerfeld
equation is inhomogeneous with respect to both the boundary conditions and the
nonlinear forcing term, has been solved by the implicit method.

4. Results
4.1. Boundary-layer vorticity disturbances

4.1.1. Response to a two-dimensional free-stream gust

The boundary-layer disturbance induced by a two-dimensional gust is first
investigated. The flow within the boundary layer is also two-dimensional, with velocity
components u(0) and v(0) and pressure p(0). The case with a wall-normal wavelength
which is long compared with the boundary-layer thickness (κ2 → 0 at x = O(1))
was first studied by Choudhari (1996) by the unsteady boundary-layer equations (see
figure 2 at p. 10 in his paper). Also, θg = 0, so that û∞

1 = 0, û∞
2 = 1, which represent

a simplified gust whose vector is oriented along the y axis. Equation (2.27) simplifies
to u(0) → exp (ix), and the amplitude of u(0) in the free stream remains equal to
unity because the effects of viscous dissipation are negligible. Choudhari (1996) found
that this component moves upward towards the free stream and eventually becomes
exponentially small in the core of the boundary layer. It confines itself in the so-called
edge layer, located in the outer portion of the boundary layer, for which an analytical
solution can be found (see Leib et al. 1999; Wu 2001b).

We consider the boundary-layer response to two-dimensional gusts with wall-
normal wavelength comparable with the boundary-layer thickness, i.e. κ = 0, κ2 = 1
and κ = 0, κ2 = 2. (Note that hereinafter the notation κ = 0 actually indicates
κ 	 1. A null value cannot be assigned to κ because this quantity appears at the
denominator in the initial conditions for the pressure component (B4) and in (A13).
A value of κ = 10−5 was assigned, and the results have been shown to be independent
of κ in this limit.) Figure 4 for κ2 = 1 and figure 6(a) for κ2 = 2 show that the
amplitude of the streamwise velocity component u(0) decays at a faster rate in the
free stream than in the core of the boundary layer. The disparity between |u(0)| in the
free stream and within the boundary layer amplifies as κ2 increases. The |u(0)| peak
within the boundary layer remains at almost the same wall-normal location, η ≈ 2.2,
when κ2 = 1, but when κ2 = 2 it moves closer to the wall from η ≈ 2.2 at x ≈ 0
to η ≈ 1.8 at x = 1.0. If the streamwise velocity is rescaled by the amplitude of its
local free-stream value (as is done in receptivity studies), the profile for κ2 = O(1)
is significantly different from the case κ2 = 0 (shown in figure 2 in Choudhari 1996)
because of the presence of the peak in the core of the boundary layer; κ2 is thus
expected to produce a marked effect on the efficiency function of the TS wave, which
depends strongly on the shape of the streamwise velocity signature (see § 4.2). The
edge-layer entrainment of the disturbances does not occur when κ2 = O(1), similarly
to the response to a three-dimensional free-stream gust when κ, κ2 = O(1) (see Leib
et al. 1999; Ricco & Wu 2007).

Figures 5 and 6(b) display the amplitude of the wall-normal velocity component v(0)

at different x locations for κ2 = 1 and κ2 = 2, respectively. The peak of |v(0)| occurs
at almost the same wall-normal location of |u(0)|, η ≈ 2. The fluctuations within the
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boundary layer and in the free stream decay at almost the same rate. This indicates
that the mean flow shear acts primarily on the streamwise component, similarly to the
three-dimensional case, where the lift-up mechanism is observed (Ellingsen & Palm
1975; Landahl 1980). Downstream of x ≈ 0.02, the profiles show a wavy modulation
in the free stream, whose amplitude and wavelength decrease slowly as the flow
develops downstream. As expected, the rate of decay is stronger when κ2 = 2. The
free-stream waviness behaviour is not observed when κ2 = 0, for which the profiles
vary little from the distribution at x 	 1 (Choudhari 1996).

If the experimental work by Dietz (1999, where the response to long-λ∗
y gusts

was studied, i.e. κ2 ≈ 0) were to be extended to investigate the effects of a viscously
dissipated and displaced free-stream fluctuation, a gust with a wall-normal wavelength
of about 1 mm would have to be generated. This would be of the same order of
magnitude of the boundary-layer thickness (less than 2 mm). The non-dimensional
wall-normal wavenumber would be κ2 ≈ 1, as suggested by the asymptotic arguments
in § 2.1.

4.1.2. Response to a three-dimensional free-stream gust: the Klebanoff modes

In this section, the evolution of boundary-layer disturbances induced by a three-
dimensional gust is studied. As the flow is now three-dimensional, we consider the
full disturbance solution {u0, v0, w0, p0}, given in (2.8). The flow parameters are
κ = κ2 = 1, k1 = 0.1 and û∞

3 = −0.2. A small value for k1 was chosen to satisfy
the asymptotic condition k1 	 1. It was not taken as extremely small in order to
investigate the importance of second-order effects and of the vorticity signature in the
outer part of the boundary layer. From the condition that the amplitude of the gust
vector is unity (2.1) and from the continuity equation (2.2), it follows that k2 = 2π,
û∞

1 ≈ 0.96, û∞
2 ≈ 0.18 and Rλ ≈ 394.8.

Figure 7 shows the amplitude of the streamwise velocity component at different
x locations, and figure 8 shows the relative importance of the amplitude of the two
components of |u0|, |C(0)u(0)|, |(k3/k1)Cu| at x = 0.5, 1.0. For this frequency k1, we note
the importance of including the component proportional to u(0). It has a magnitude
comparable with the component proportional to u for x � 1, is dominant in the
outer portion of the boundary layer and matches the streamwise component of the
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free-stream gust. The typical profile of the Klebanoff modes appears downstream of
this location, with the u component playing a leading role in the core of the boundary
layer, while u(0) becomes gradually less important. As will be verified in § 4.1.3 when
the numerical results are compared successfully with experimental data, the inclusion
of the u(0) component gives a more realistic representation of the Klebanoff mode
shape than if only u is considered or if the streaks are described by other theories,
which allow for the streamwise velocity component to vanish as the free stream is
approached. One theory is for example the one by Taylor (1939), who has described
the streaks by a small spanwise perturbation of the mean boundary-layer thickness,
so that u ∼ ηF ′′.

The disturbance is eventually damped by viscous effects both inside the viscous
region and in the free stream, where the dissipating effects of both the wall-normal
and the spanwise length scales are at work. The entrainment of disturbance in the
outer portion of the boundary layer, in the so-called edge layer, does not occur, being
a phenomenon solely restricted to gusts with small κ values (see Choudhari 1996;
Leib et al. 1999).

The wall-normal and spanwise velocity profiles, respectively shown in figure 9(a,b),
do not present the growth in the core of the boundary layer displayed by the
streamwise component, being significantly damped by viscous effects. The free-stream
wavy modulation of |v(0)| which occurs when κ = 0, κ2 = O(1) (see figures 5 and
6b), is absent when κ = κ2 = 1. The amplitude of pressure p0, shown in figure 10,
bears some resemblance with the root mean square (r.m.s.) profile of the pressure
fluctuations in a turbulent boundary layer (see Schewe 1983 and Tsuji et al. 2007 for
experimental results and Spalart 1988 for numerical results), although in this latter
case the peak occurs closer to the wall. The local maximum of |p0| in the core of the
boundary layer corresponds to the peak of |u0|.

The boundary-region solution {u(0), v(0), w(0), p(0)} can be expressed through an
asymptotic solution, u(0) = û(0)(κ2x, η; κ2/κ), {v(0), w(0), p(0)} = κ2{v̂(0), ŵ(0), p̂(0)}(κ2x,

η; κ2/κ) in the limit κ → ∞, κ2/κ = O(1). The scaled quantities {û(0), v̂(0), ŵ(0), p̂(0)}
satisfy the steady boundary-region equations. This scaling is verified numerically in
figure 11, where the profiles tend to collapse on one another as κ grows.
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3 = −0.2

at different x locations.

4.1.3. Comparison with experimental data by Westin et al. (1994)

This section presents comparisons between our numerical calculations and the
wind-tunnel data by Westin et al. (1994), which are of utmost importance because
they include distributions not only of the r.m.s. of the streamwise velocity fluctuations,
but also of the fluctuating energy divided into bands centred at a single frequency.
The Klebanoff modes were generated in a flat-plate laminar boundary layer by
nearly isotropic free-stream turbulence evolving on a mean flow of U∞ = 8 ms−1.
The boundary-layer thickness varied between about 5 and 7 mm at the measurement
locations. As the wind-tunnel single-frequency data in figure 12(a) in Westin et al.
(1994) were obtained from a decomposition of a full spectrum of turbulence, while our
calculations correspond to the evolution of a single Fourier mode, a few assumptions
are necessary to carry out the comparison:

(a) Small-amplitude fluctuations. We assume that the boundary-layer fluctuations
can be treated as linearized perturbations about the Blasius flow. This is reasonable at
x∗ = 500 mm because the mean flow measurements shown in figure 6 in Westin et al.
(1994, p. 205) deviate only about 1% or less from the laminar solution. This hypothesis
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is arguably not applicable at the farthest measurement point (x∗ = 1000 mm), which
is near the transition location. Under this assumption, it follows that each vortical
structure corresponding to a Fourier mode may be assumed to evolve independently,
and the gust-convection relation k∗

x = ω∗/U∞ holds. The streamwise wavelength λ∗
x

and the x position can be estimated. The assumption of small amplitude also implies
that the spanwise wavelength remains constant as the flow evolves downstream, which
is consistent with the observations of Westin et al. (1994).

(b) Axisymmetric turbulence in y–z plane. We assume that the free-stream
turbulence is axisymmetric, i.e. homogeneous and isotropic in y–z planes
perpendicular to the mean flow (Batchelor 1946; Chandrasekhar 1950). The
measurements show that the statistics of the fluctuating velocity components along
these directions assume almost the same values and are uniforms in such planes. The
r.m.s. of the streamwise velocity component is instead three–four times larger. The
integral and Taylor length scales along the y and z directions are comparable, while
they are two–three times larger along the streamwise direction. Therefore, it appears
legitimate to assume that λ∗

y=λ∗
z (i.e. κ2=κ) and û∞

2 =û∞
3 . We set û∞

1 = 1 without
losing generality because the data will be rescaled by the maximum of the squared
streamwise velocity of the corresponding experimental profile.
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d . Lines denote the numerical calculations and symbols the experimental

data by Westin et al. (1994) at x∗ = 500 mm for U∞ = 8 m s−1.

In order to fully specify the problem, we must estimate the spanwise wavelength λ∗
z

and û∞
3 . As no information is provided on how these quantities vary with the frequency

for each Fourier component, we resort to the numerical calculations. Following the
result shown in figure 2 in Leib et al. (1999, p. 178), i.e. at leading order the position of
the maximum only depends on κ (and therefore on λ∗

z for given U∞, ν, λ∗
x), we estimate

λ∗
z = λ∗

z(κ) through our numerical database by determining κ for which the maximum
of the Klebanoff modes given in figure 12(a) in Westin et al. (1994) agrees with the
numerical ηmax . The velocity component û∞

3 is estimated in similar fashion through



The Klebanoff modes induced by small-wavelength free-stream vorticity 291

F̂ k1 f ∗(Hz) λ∗
x (mm) λ∗

z (mm) κ x

7.5 0.034 5.12 1560 8.5 0.50 2.01
35 0.123 23.91 335 6.6 0.30 9.39
75 0.272 51.24 156 6.8 0.20 20.12

150 0.378 102.49 78 4.7 0.20 40.25
220 0.518 150.32 53 4.4 0.17 59.03

Table 1. Estimated flow quantities of experimental data shown in figure 12(a) in
Westin et al. (1994, p. 210).

the comparison of the ratio between the experimental |u|max and |u| in the free stream

with C/(k1C
(0)) ≈

√
2û∞

3 /(k1û
∞
1 ). The latter is a reasonable approximation of the ratio

of the experimental quantities because the dominant part in the first equation of (2.8)
peaks in the core of the boundary layer, while the lower-order component is likely to
reach its maximum in the free stream. Table 1 gives our estimates for the experimental
conditions of the data of Westin et al. (1994) in figure 12(a). As expected, κ = O(1)
or smaller, and the estimated values for λ∗

z are comparable with the streak spacing
∼7 mm measured by Westin et al. (1994). It is also found that λ∗

x � λ∗
z, δ

∗, as required
by the asymptotic analysis.

Figure 12(a) presents the comparison between the profiles of the fluctuating energy
and our calculations of the full Klebanoff mode solution u0 in (2.8), rescaled by the
maxima of each experimental profile. The overall agreement is good, especially for
the low-frequency fluctuations. The low-frequency fluctuations penetrate more deeply
into the boundary layer and are amplified more than the high-frequency fluctuations.
These are located in the proximity of the free stream, as predicted by the theory of the
edge-layer confinement (Gulyaev et al. 1989; Leib et al. 1999). The better agreement
for data at low frequency may be due to the higher uncertainty for high-frequency
fluctuations, which are of smaller amplitude. Another source of error could be that
the calculation are carried out at a specified frequency F̂ , while it is not clear how
wide the frequency band centred at F̂ actually is for the profiles in figure 12(a). In
figure 12(b), a good agreement between our calculations and the urms profile by Westin
et al. (1994) in figure 9(b) is shown. As no detailed information is provided about
the free-stream spectrum, we have computed the numerical trend by summing the
profiles in figure 12(a). Note that the rescaling by the maximum of the experimental
urms is performed after the summation.

4.2. Boundary-layer receptivity by free-stream vortical disturbances interacting with
localized wall inhomogeneities

The receptivity of the Blasius boundary layer to a two-dimensional gust interacting
with localized wall perturbations is studied in this section. We investigate how the
absolute value of the efficiency function Λu of the streamwise velocity component
varies as a function of the frequency f of the gust at a downstream Reynolds number
Reδ = 1216.78 (Rex = 5 × 105, as in figures 5 and 6 in Choudhari 1996). At this Reδ ,
there exists a wide range of frequencies f for which the eigenmodes are unstable, as
shown by the growth rates in figure 13 (dashed line). Although the physical location
x∗ of the wall perturbation is constant since Reδ is unvaried, the scaled streamwise
distance x used for the LUBR computations grows with f (see (2.31)). The location x

changes from 5 to about 50 in the range of frequency considered. It is first checked that
approximation (2.33) for the gust response holds in the unstable range of frequencies.
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Figure 14 shows that the real and imaginary parts of the ratio (u(0))x/u
(0) (where the

subscript indicates partial differentiation with respect of x) are largely independent
of x in the x range in which the TS waves are unstable, 20 < x < 50. This shows that
the gust has an exponential-like behaviour where the TS waves are unstable. It is also
evident that such an approximation is not valid for smaller x = O(1), which confirms
that the Orr–Sommerfeld and Squire equations, in which the streak behaviour is
treated as wave-like, cannot be employed to study the laminar streaks because the
non-parallel effects are relevant there and cannot be ignored.

The corresponding values of κ2 are displayed in figure 13 (κ = 0 because the forcing
gust is two-dimensional). Each curve corresponds to a different wall-normal velocity
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component of the gust, û∞
2 , or to a different θg = arccos(û∞

2 ). For a fixed frequency,
from the definition of κ2 given in the ‘Introduction’, (2.1) and (2.2), it follows that κ2

grows as û∞
2 decreases in amplitude (and θg → π/2). The effects of a small wall-normal

wavelength are therefore expected to intensify as û∞
2 decreases, i.e. for gusts mainly

oriented along the streamwise direction. Note that when κ2 = O(1), the numerical
computation of Λu takes a much longer time than when κ2 = 0. Indeed, as f and
κ2 vary, each Λu computation requires that the integration of the LUBR equations
be started from the proximity of the leading edge, whereas when κ2 = 0, the correct
vorticity signature can be obtained by integration from the x position corresponding
to the previous f .

Figure 15 shows |Λu| as a function of f (a) for the wall-roughness case and (b)
for the wall-suction case. The profiles are qualitatively similar in the two cases, but
the wall-suction values are about two order of magnitudes larger. The efficiency
function first decreases as θg grows, but eventually the effect of a small wall-normal
wavelength is to amplify |Λu| significantly when κ2 = O(1). This growth is mainly
caused by the shape of the streamwise disturbance velocity profile. For small wall-
normal wavelengths, figures 4 and 6(a) show that the amplitude of the streamwise
fluctuations decreases more rapidly in the free stream than within the boundary layer
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because the shear of the mean flow works as an amplifier and counteracts the viscous
dissipation effects, a phenomenon which is more intense as κ2 grows. The shape of the
streamwise velocity profile is therefore significantly different from the boundary-layer
case, κ2 = 0 and û∞

2 = ±1.0, where, for this range of x locations, the streamwise
velocity disturbance within the boundary layer is always lower than in the free stream
(see figure 2 in Choudhari 1996, p. 10). For the receptivity calculations, the velocity
disturbances are rescaled by the amplitude of the free-stream streamwise component,
so that the peak of streamwise velocity becomes responsible for an intense nonlinear
forcing that amplifies |Λu|. Indeed, the forcing amplitude has been found to grow
with x and κ2.

We close this section by pointing out some differences between the present vorticity-
induced receptivity and the analogous acoustic receptivity. Firstly, in the vorticity case,
the nonlinear terms are concentrated in the core of the boundary layer, while in the
latter case the induced perturbation is much closer to the wall (see figure 7 in
Choudhari & Streett 1992, p. 2505). The relative contribution of the inhomogeneous
wall boundary conditions and of the nonlinear forcing terms on the efficiency function
is also of interest. The influence of the boundary conditions has been found to be
negligible in the vorticity case by setting the wall boundary condition to zero in (2.35)
and by retaining the nonlinear terms in (2.34) (a technique also used by Choudhari &
Streett 1992). The main reason for this is that the vorticity response is not confined to
the proximity of the wall, so that the wall-shear stress of the streamwise perturbation,
UgY , appearing in the wall boundary conditions (2.35), is small, and its influence on the
TS-wave scattering is limited. This scenario is in marked contrast with the receptivity
to acoustic forcing, where the nonlinear terms and the wall boundary condition have
a comparable (and partly mutually cancelling) effect (Choudhari & Streett 1992).

5. Summary
There has recently been considerable interest in the theoretical modelling of

the laminar streaks (or Klebanoff modes), namely the streamwise-elongated, low-
frequency disturbances appearing in pre-transitional laminar boundary layers as a
consequence of a medium-to-high level of free-stream turbulence. The reason for this
lies in the belief that the streaks may be responsible for the so-called bypass transition,
namely the breakdown to turbulence via some mechanism which is alternative to the
slower, classical instability route involving TS waves propagating in a purely laminar
boundary layer. Experimental evidence indeed shows that when the free stream is
sufficiently disturbed by vortical fluctuations, the laminar streaks quickly evolve into
turbulence spots.

A mathematical framework for the laminar streaks which can be regarded as all-
inclusive is the one by Leib et al. (1999). Their asymptotic analysis in the limit of
small-amplitude and low-frequency disturbances shows that relevant features such as
the streak unsteadiness, the non-parallel effects, the spanwise viscous diffusion and
the influence of free-stream fluctuations are all of the same order of magnitude and
are therefore taken into account.

In the present work, the study of Leib et al. (1999) has been extended to compute
(i) the boundary-layer vorticity signature induced by a two-dimensional free-stream
gust with a small wall-normal wavelength, (ii) the second-order terms of a fully three-
dimensional Klebanoff mode and (iii) the TS wave excited when a two-dimensional
vorticity fluctuation such as the one in (i) interacts nonlinearly with a small localized
wall perturbation.



The Klebanoff modes induced by small-wavelength free-stream vorticity 295

The interest in (i) resides in the fact that Leib et al. (1999) did study the response
of a three-dimensional gust with wall-normal and spanwise wavelengths comparable
with the boundary-layer thickness and also that of only a two-dimensional gust
with wall-normal wavelength which is asymptotically larger than the boundary-layer
thickness. The first part of the present study has therefore focused on the effect
of the two-dimensional-gust viscous dissipation and wall-normal displacement on
the boundary-layer signature, namely on the influence of wall-normal wavelengths
which are comparable with the layer thickness. In this case, it is found that the
streamwise velocity profile shows a marked peak in the core of the boundary layer
and that the wall-normal velocity profile presents a wavy character as the free stream
is approached.

We have carried out part (ii) of the analysis because the second-order terms of the
vorticity signature, which are negligible in the core of the boundary layer, may become
dominant in the outer portion of the boundary layer. The profiles of the Klebanoff
modes have been compared with the distributions of fluctuating energy at different
frequencies measured by Westin et al. (1994). A good agreement has been attained by
assuming that the perturbations are of small amplitude and axisymmetric in planes
perpendicular to the mean flow. Our estimates have also successfully reproduced the
r.m.s. of the streamwise velocity fluctuations.

The effect of small-wavelength gusts on the scattering of TS waves (iii) has been
found to be significant because of the difference in magnitude of the streamwise
velocity in the core of the boundary layer and in the outer portion near the free
stream. This part of the analysis could be viewed as a contribution to the long-
standing effort to understand the interplay between the Klebanoff modes and the
TS waves. Future work should be directed to more complex scenarios, such as the
receptivity of three-dimensional gusts interacting with three-dimensional, distributed
wall inhomogeneities.

It is our hope that the present analysis will motivate further experimental
investigation. For example the accurate study by Dietz (1999) may be extended to
generate two-dimensional free-stream gusts with wall-normal wavelengths comparable
with the boundary-layer thickness, so that the present theoretical analysis may be
validated. The gust may still be produced by a thin vibrating ribbon, and the small
wall-normal wavelength could be fixed by the inclination of the plane of oscillation
with respect to the direction of the free-stream mean flow. An even more involved
experiment would focus on the boundary-layer response to a single three-dimensional
Klebanoff mode, which would allow a detail comparison with our results and those
of Leib et al. (1999). As opposed to a straight ribbon as in the work of Dietz (1999),
a wavy, vibrating (or rotating) thin ribbon could be used, thereby allowing the precise
specification of the gust amplitude and frequency and its wall-normal and spanwise
wavelengths. Bypass transition induced by a combination of medium-to-high free-
stream turbulence and distributed roughness would also be of great practical interest.

I acknowledge the help of Professor Tapan K. Sengupta and Professor Thomas
Bridges on the compound matrix method for the solution of the Orr–Sommerfeld
equation. I would like to thank the referees for their useful suggestions and Dr M. E.
Goldstein for his insightful comments on a preliminary version of the paper.

Appendix A. Power series equations for initial conditions
The equations for the power series terms in (2.30) and their boundary conditions

are presented. Differently from Leib et al. (1999), the wall-normal and spanwise
components are now singular as x → 0+. The first three terms are retained in order to
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start the marching procedure correctly. Note that for {u, v, w, p} only two terms are
sufficient. The third terms are now necessary to make the components v(0), w(0) satisfy
the no-slip condition at the wall as x → 0+. By substituting (2.30) into the LUBR
equations (2.9)–(2.12) and by collecting like powers of x, three systems of ordinary
differential equations are obtained:

V ′
0 − ηU ′

0 = 0, (A1)

ηF ′′U0 + FU ′
0 + U ′′

0 − F ′′V0 = 0, (A2)

P ′
0 = 0, (A3)

F ′W0 + FW ′
0 + W ′′

0 + κ2P0 = 0, (A4)

U1 − ηU ′
1 + V ′

1 + W0 = 0, (A5)

(F ′ − ηF ′′)U1 − FU ′
1 − U ′′

1 + F ′′V1 = 0, (A6)

P ′
1 = (2F ′ − (ηF ′)′)V0 + FV ′

0 + V ′′
0 + (η(ηF ′)′ − F )U0, (A7)

FW ′
1 + W ′′

1 + κ2P1 = 0, (A8)

2U2 − ηU ′
2 + V ′

2 + W1 = 0, (A9)

(2F ′ − ηF ′′)U2 − FU ′
2 − U ′′

2 + F ′′V2 + (κ2 − i)U0 = 0, (A10)

P ′
2 = (F ′ − (ηF ′)′)V1 + FV ′

1 + V ′′
1 + (η(ηF ′)′ − F )U1, (A11)

F ′W2 − FW ′
2 − W ′′

2 − κ2P2 + (κ2 − i)W0 = 0. (A12)

The velocity components in (A1)–(A12) satisfy the no-slip condition at the wall. The
outer boundary conditions are found as follows. Firstly, the power series expansion
for u(0) is matched with the x 	 1 expansion of its large-η solution (2.13) to obtain

U0 → 1, U1 → i(κ2 + i|κ |)η,

U2 → (1/2)

(
i − κ2(κ2 + i|κ |) − κ3

2 + i|κ |3
κ2 − i|κ | η2

)
as η → ∞.

The x 	 1 expansion of the large-η solution (2.15) for w(0) is matched with the
leading-order term in the power series expansion to find

W0 → −β|κ |(κ2 − i|κ |)
2(κ2 + i|κ |) , as η → ∞, and P0 =

β(κ2 − i|κ |)
2|κ |(κ2 + i|κ |) .

The large-η wall-normal velocity component (2.14) is matched at leading order with
the initial condition for the boundary-layer equations, given by (4.13) in Leib et al.
(1999), namely v(0) → β/(4x). It is found that∫ x

0

g(0)(x̆)e−ix̆dx̆ =
β

|κ |(2x)1/2

(
1 −

κ2

(
3κ2

2 − κ
)

2(κ2 − i|κ |)
(
κ2 + κ2

2

)
)

+
g

(0)
1

|κ | +
g

(0)
2 (2x)1/2

|κ | . . . .

(A13)
The constants g

(0)
1 , g

(0)
2 are found by matching the second-order term and the third-

order term of the x 	 1 expansion of the large-η solution (2.14) for v(0) as η → ∞
with the numerical solution for V1 and V2, respectively. It follows that

g
(0)
1 = V1,0 + i(κ2 + i|κ |) + β2

(
−3|κ |/2 +

|κ |κ2

2(κ2 − iκ)
+

κ2

(κ2 − i|κ |)
(
κ2 + κ2

2

)
×

(
|κ |

(
3κ2

2 − κ2
)
/2 + iκ2

(
κ2

2 − κ2
)))

,
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where

V1,0 = lim
η→∞

(
V1 +

(
3|κ |β/2 − iκ2

2β

κ2 + i|κ |

)
η

)
,

and

g
(0)
2 = V2,0 +

β

4(κ2 − i|κ |)
(
2κ2

(
κ2

2 − κ2
)

+ 8i|κ |3 + |κ |
)

− iβ(κ2 − 2i|κ |)
4(κ2 − i|κ |) − β

(
i + |κ |g(0)

1

)
+ βκ2(κ2 + i|κ |)

+
β3

4(κ2 − i|κ |)

(
3i|κ |3 +

2κ5
2 + 2i|κ |5 − 3κ4κ2 + 2i|κ |3κ2

2 − κ2κ3
2

κ2 + κ2
2

)
,

where

V2,0 = lim
η→∞

(V2 − V2,1η − V2,2η
2), V2,1 = κ2(κ2 + i|κ |) − i − |κ |g(0)

1 − 2βV2,2,

V2,2 = − β

4(κ2 − i|κ |)

(
3i|κ |3 +

2κ5
2 + 2i|κ |5 − 3κ4κ2 + 2i|κ |3κ2

2 − κ2κ3
2

κ2 + κ2
2

)
.

The x 	 1 expansion of the large-η solution (2.15) for w(0) is matched with the
second-order term in the power series expansion to find

W1 → |κ |g(0)
1 − 3κ2βη/2,

W2 → |κ |g(0)
2 − κ2g

(0)
1 η +

iβκ2
(
i − 4κ2

2 − 8κ2
)

4(κ2 − i|κ |) +
β|κ |

(
2|κ |3 − iκ3

2 − 2|κ |κ2
2 + 3iκ2κ

2
)

4(κ2 − i|κ |)
(
κ2 + κ2

2

)
−

βκ2η2
(
5iκ4 − 3|κ |3κ2 + 5iκ2κ2

2 + |κ |κ3
2 + 4iκ4

2

)
4(κ2 − i|κ |)

(
κ2 + κ2

2

) as η → ∞

and

P1 → 3βη/2,

P2 → g
(0)
2 |κ | +

iβκ3
2

4|κ |(κ2 − i|κ |)
(
κ2 + κ2

2

) +
β
(
−κ2 + 3κ2

2 − 3i|κ |κ2 + 4iκ2κ2
2 + 4iκ4

2

)
4(κ2 − i|κ |)

(
κ2 + κ2

2

)
+

βη2
(
5iκ4 − 3|κ |3κ2 + 5iκ2κ2

2 + |κ |κ3
2 + 4iκ4

2

)
4(κ2 − i|κ |)

(
κ2 + κ2

2

) as η → ∞.

Appendix B. Initial conditions for the boundary-region equations
The initial conditions to be imposed for {u(0), v(0), w(0), p(0)} at x 	 1 are

u(0) → U0 + (2x)1/2U1 + 2xU2 +
eix

κ2 − i|κ |

(
κ2e

iκ2(2x)1/2η−(κ2+κ2
2 )x − i|κ |e−|κ |(2x)1/2η

)

− 1 − i(2x)1/2(κ2 + i|κ |)η +

(
− i + κ2(κ2 + i|κ |) +

κ3
2 + i|κ |3
κ2 − i|κ | η2

)
x, (B1)
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v(0) → V0

2x
+

V1

(2x)1/2
+ V2 +

eix−|κ |(2x)1/2η

(κ2 − i|κ |)(2x)1/2

(
− 2i|κ |3β(2x)1/2 + 1 + iκ2βη

+
i|κ |β

2(2x)1/2

)
+ eix−|κ |(2x)1/2η

(
β

2x

(
1 −

κ2

(
3κ2

2 − κ2
)

2(κ2 − i|κ |)
(
κ2 + κ2

2

))
+

g
(0)
1

(2x)1/2
+ g

(0)
2

)

+
eix+iκ2(2x)1/2η−(κ2+κ2

2 )x

κ2 − i|κ |

(
κ2β

(
κ2

2 − κ2
)

2x
(
κ2 + κ2

2

) −
1 + i

(
κ2 + κ2

2

)
(2x)1/2

)
− β

4x

− 1

(2x)1/2

(
g

(0)
1 − i(κ2 + i|κ |) +

βη
(
2iκ4

2 + 3iκ4 + iκ2κ2
2 + |κ |κ3

2 − 3|κ |3κ2

)
2(κ2 − i|κ |)

(
κ2 + κ2

2

) )

− g
(0)
2 +

β

4(κ2 − i|κ |)
(
2κ2

(
κ2

2 − κ2
)

+ 8i|κ |3 + |κ |
)

− iβ(κ2 − 2i|κ |)
4(κ2 − i|κ |) + η

(
i + |κ |g(0)

1

− κ2(κ2+i|κ |)
)
+

βη2

4(κ2 − i|κ |)

(
3i|κ |3 +

2κ5
2 + 2i|κ |5 − 3κ4κ2 + 2i|κ |3κ2

2 − κ2κ3
2

κ2 + κ2
2

)
,

(B2)

w(0) → W0

(2x)1/2
+ W1 + (2x)1/2W2 + |κ |eix−|κ |(2x)1/2η

(
β

(2x)1/2

(
1 −

κ2

(
3κ2

2 − κ2
)

2(κ2 − i|κ |)
(
κ2 + κ2

2

))

+ g
(0)
1 + g

(0)
2 (2x)1/2

)
+

iβκ2eix−|κ |(2x)1/2η

(κ2 − i|κ |)(2x)1/2
(1/2 + |κ |

(
2x)1/2η

)

+
2iβκ2κ2

2 eix+iκ2(2x)1/2η−(κ2+κ2
2 )x

(2x)1/2(κ2 − i|κ |)
(
κ2 + κ2

2

) +
β|κ |(κ2 − i|κ |)

2(2x)1/2(κ2 + i|κ |) −g
(0)
1 |κ |+(3/2)κ2βη−(2x)1/2

×
(

|κ |g(0)
2 −κ2g

(0)
1 η+

iβκ2
(
i − 4κ2

2 − 8κ2
)

4(κ2 − i|κ |) +
β|κ |

(
2|κ |3 − iκ3

2 − 2|κ |κ2
2 +3iκ2κ

2
)

4(κ2 − i|κ |)
(
κ2 + κ2

2

)
−

βκ2η2
(
5iκ4 − 3|κ |3κ2 + 5iκ2κ2

2 + |κ |κ3
2 + 4iκ4

2

)
4(κ2 − i|κ |)

(
κ2 + κ2

2

) )
, (B3)

p(0) → P0

(2x)3/2
+

P1

2x
+

P2

(2x)1/2
− βeix−|κ |(2x)1/2η

|κ | (2x)3/2

(
1 −

κ2

(
3κ2

2 − κ2
)

2
(
κ2 − i|κ |

) (
κ2 + κ2

2

)
)

+
g

(0)
2 eix−|κ |(2x)1/2η

|κ |(2x)1/2
− iβeix−|κ |(2x)1/2η

2|κ | (2x)1/2

(
1 −

κ2

(
3κ2

2 − κ2
)

2
(
κ2 − i|κ |

) (
κ2 + κ2

2

)
)

− iβeix

(2x)3/2(κ2 − i|κ |)

((
1/2 + |κ |(2x)1/2η

)
e−|κ |(2x)1/2η +

2κ2
2 eiκ2(2x)1/2η−(κ2+κ2

2 )x

κ2 + κ2
2

)

− β(κ2 − i|κ |)
2(2x)3/2|κ |(κ2 + i|κ |) − 3βη

4x
− 1

(2x)1/2

(
g

(0)
2 /|κ | +

iβκ3
2

4|κ |
(
κ2 − i|κ |

) (
κ2 + κ2

2

)
+

β
(
−κ2 + 3κ2

2 − 3i|κ |κ2 + 4iκ2κ2
2 + 4iκ4

2

)
4(κ2 − i|κ |)

(
κ2 + κ2

2

)
+

βη2
(
5iκ4 − 3|κ |3κ2 + 5iκ2κ2

2 + |κ |κ3
2 + 4iκ4

2

)
4(κ2 − i|κ |)

(
κ2 + κ2

2

)
)

. (B4)
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Figure 16. Amplitude of (a) streamwise u(0) and (b) wall-normal v(0) velocity profiles for
κ = 0 and κ2 = 1 at x = 7 × 10−4 obtained by the initial composite solutions (B1) and (B2).
The symbols are as follows: �, inner solution; �, outer solution; �, common part; solid line,
composite solution.

For a two-dimensional gust, the initial conditions reduce to

u(0) → U0 + (2x)1/2U1 + 2xU2 + eix+iκ2(2x)1/2η−κ2
2 x

− 1 − iηκ2(2x)1/2 +
(
−i + κ2

2

(
1 + η2

))
x, (B5)

v(0) → V0

2x
+

V1

(2x)1/2
+ V2 +

eix

κ2(2x)1/2
+ eix

(
− β

4x
+

g
(0)
1

(2x)1/2
+ g

(0)
2

)

+ eix+iκ2(2x)1/2η−κ2
2 x

(
β

2x
− 1 + iκ2

2

κ2 (2x)1/2

)
− β

4x
− g

(0)
1 − iκ2(1 − βη)

(2x)1/2

− g
(0)
2 + βκ2

2/2 − iβ/4 + η
(
i − κ2

2

)
+ βκ2

2η
2/2, (B6)

∂p(0)

∂η
→ P ′

0

(2x)3/2
+

P ′
1

2x
+

P ′
2

(2x)1/2
− βeix

4x
− g

(0)
2 eix − iβeix/4

+ βx−1eix+iκ2(2x)1/2η−κ2
2 x − 3β

4x
− 2iβηκ2

(2x)1/2
.

The outer boundary conditions for the power series equations become

U1 → iκ2η, U2 →
(
i − κ2

2 (1 + η2)
)
/2 as η → ∞,

and the constants simplify to

g
(0)
1 = V1,0 + iκ2(1 + β2), g

(0)
2 = V2,0 − 5iβ/4 + 3βκ2

2/2 + β3κ2
2/2,

V2,1 = κ2
2 − i, V2,2 = −βκ2

2/2.

Figure 16 displays the profiles of the amplitude of the streamwise u(0) and wall-
normal v(0) velocity components for κ = 0, κ2 = 1 at x = 7 × 10−4 obtained by the
initial conditions (B1) and (B2) (or (B5) and (B6) in this two-dimensional case). The
inner solutions are given by the power series terms in (2.30). The outer solutions are
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Figure 17. Amplitude of wall-normal v(0) velocity profiles for κ = 0 and κ2 = 1 at different
streamwise locations x 	 1 obtained by (B2) (solid lines) and by solving numerically the
LUBR equations (2.9)–(2.12) with one downstream step (�x = 10−4) (circles).

the terms including the exponentials in (B1) and (B2). The common parts are given
by the remaining terms in (B1) and (B2).

Figure 17 shows the profiles of the amplitude of v(0) for κ = 0, κ2 = 1 at different
streamwise locations x 	 1 obtained by the composite solution (B2). The profile at
x = 7 × 10−4 is successfully compared with the solution computed by integrating the
LUBR equation by one step (�x = 10−4).
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